OBSERVATIONS ON THE JOURNAL PUBLICATION PROCESS

B. Wade Brorsen

This paper provides a brief guide to journal publication success. Topics covered include reasons for acceptance or rejection, how to organize a paper, how to assign authorship, how to select an appropriate journal, and how to handle editors and reviewers. Authors should be able to use the information provided here to improve their probability of success and to speed up the review process.

In agricultural economics, like most other academic professions, publications are the primary measure of research performance. Adams argues that too much importance is given to the number of publications with only limited emphasis on quality, but research that is never communicated to others is indeed of little value.

Young agricultural economists learn about publishing in a variety of ways, often by trial and error. McCloskey (p. 188) argues that, even though many veteran authors could help younger professionals with their writing, they rarely do. A widely available set of guidelines could help young authors improve their success rate and reduce wasted effort. The purpose of this paper is to meet this need by providing a brief guide to journal publication success. This paper represents a set of observations derived from the author’s own trials and errors as well as experiences related by others.

B. Wade Brorsen is currently regents professor and Jean and Patsy Neustadt Chair at Oklahoma State University.

Helpful comments from Tim Baker, Peter Barry, Deb Brown, John Connor, Jess Lowenberg-DeBoer, Scott Irwin, Allan Randall, and Lee Schrader are gratefully acknowledged. The author would also like to acknowledge that some of this material has been adapted from the class notes of Rod Ziemer.

Incentives to publish are strong. Publications can be important while in graduate school since publications, unlike grades, usually count for a lifetime. One incentive to publish is financial. In a 1979 study of faculty salaries, Broder and Ziemer (1982) found that an additional American Journal of Agricultural Economics (AJAE) article published every other year would realize $738/year more in salary. Publications are also usually a requirement for promotion. The minimum number of publications required for promotion varies depending on quality, the university, and time allocated to research. Lacy and Busch reported agricultural scientists published an average of 2.2 journal articles per year with 0.9 of these as senior author. Publication rates may be slightly lower for agricultural economists due to our journals’ lower acceptance rates, more generous inclusion of co-authors in other fields, and our profession’s requirement of theory to support empirical results. A survey of 12 agricultural economics departments (NCA-12) showed that a primarily research faculty member needed a minimum of about five journal articles to be promoted to associate professor and about eight to be promoted to full professor. Only three of the schools in the survey reported that a faculty member with a 100% teaching and/or extension appointment was not expected to publish refereed journal articles. Publications can also help graduate students. Hiring decisions are made with imperfect information. A publication provides solid evidence of ability to perform publishable quality research. Even papers in review or in preparation can make a difference. Finally, publications provide personal sat-
satisfaction. To publish is to be thrilled twice, once when the letter of acceptance is received and again when the paper appears in print.

Armstrong argues cynically that the formula for success in publishing is: choose unimportant problems, agree with current beliefs, advocate one hypothesis rather than multiple hypotheses, write confusing prose, use complicated methods, and avoid full disclosure of methods and data. McCloskey also argues that our peer review process has many problems. Rather than attempting to evaluate the system, this paper seeks to help agricultural economists succeed within the present system. Success includes both getting a paper published and having it read and referenced by others.

Reasons for Acceptance or Rejection

Most past research has found the main reason reviewers give for rejecting a paper is that it failed to make a significant contribution to the current body of knowledge (Coe and Weinstock). The contribution of a paper means different things to different people. For Lindsey’s social scientists the paper’s contribution was related to theoretical relevance of the research question and creativity of ideas in the article. Lacy and Busch found agricultural scientists associated a paper’s contribution with increased agricultural productivity and the value of the article to clients’ needs. Agricultural economics is an uncomfortable mixture of the groups sampled by Lindsey and Lacy and Busch. Because of this, there is conflict between those agricultural economists who argue for theoretical relevance and those who argue for real world relevance. But, past research does tend to agree that the contribution of a paper has two components: 1) importance of the topic and 2) originality. The paper can contain important knowledge, which is of interest only to professional peers, or information that is useful to policymakers, businesses, or agricultural producers. The paper can have new theory or new methods or may be a new application of established theory or methods to an interesting problem. A paper that has new theory or new methods is of international rather than regional interest and thus can be published in a more prestigious journal.

The methods should be sufficient to meet the objectives of the paper and be the best available. This does not mean methods have to be complex. A reviewer may take a dim view of methods that are more complex than necessary. But, papers that appropriately use complex methods seem to get published in more prestigious journals.

McCloskey (p. 188) argues that “rotten writing causes more papers to be rejected than rotten t-statistics.” A reviewer who has trouble reading a paper is likely to become frustrated and angry. Angry reviewers are not likely to respond favorably. Even more important, a poorly written paper may fail to communicate what is original and important. A reviewer should not have to guess how the paper contributes to the current body of knowledge.

A paper will also be rejected if it is inappropriate for the journal. A paper will have the best chance for acceptance if it is sent to a journal, which has published papers on the same or closely related topics.

Berardo also argued for the importance of what he called paradigmatic constraints. Reviewers are reluctant to accept a paper that challenges conventional wisdom (or perhaps in some cases just the reviewer’s own opinion). Reviewers may be correct in rejecting papers that disagree
with their beliefs when the cost of adopting a new and possibly wrong paradigm is high. But, reviewers do not always subscribe to the same paradigms and thus this category is probably responsible for much of the randomness in responses of reviewers. Widely accepted paradigms can be challenged successfully, but arguments will be held against a higher standard than if the results were consistent with conventional wisdom.

The Research Process

Ideally, research starts with a problem, not a technique or a data set. Of course, time is saved by selecting a problem that can be analyzed with a familiar technique or uses an easily available data set. A young researcher who has difficulty in recognizing publishable topics should not hesitate to borrow ideas from other researchers who have more ideas than time. An easy way to fail is to conduct research without identifying a problem.

A list of researchable problems is useful, since a good idea may be forgotten if not recorded. But, perhaps more important, writing it down can prevent wasting time thinking about a mediocre idea. Later, the best ideas on the list can be picked out and the rest can be ignored.

A set of possible steps in empirical research is:

1. Recognize a researchable problem.
2. Define the problem.
3. Select an appropriate model and technique.
4. Collect data.
5. Analyze data.
6. Interpret results.
8. Have it published.

This list is idealistic in that research rarely proceeds in exactly this order. Most papers go through several iterations, going from steps 7 or 8 all the way back to step 3 or even step 1. Ladd argues writing is important in each of these steps of the research process. It is important to remember this idealized set of steps when writing a paper, since papers are often written as if these steps had been followed.

Little class time in graduate school is spent on steps 7 and 8. This is as it should be since good writing cannot save a paper if the first six steps are not done properly. But, steps 7 and 8 can take about as much time as the other six steps. The prolific author rarely gets past the early steps without ultimately getting a publication. It is best to either give up early or persevere until the end. Researchers may decide to quit if they are not familiar with the appropriate technique (e.g., an econometrician may not want to bother learning the necessary math programming techniques) or if adequate data cannot be obtained.

The objective of research is to solve the problem, not apply a technique or analyze data. The first draft often merely chronicles what the researcher has done and reads as if the purpose of the paper was to apply a technique to a data set. This first draft is sometimes called writer-based prose since it makes sense to the writer, but not to anybody else (Flower). This writer-based prose must be transformed into reader-based prose. How well this transformation is performed affects the reviewers’ evaluation of the
paper. For specifics on style, read Zinser, McCloskey, or Strunk and White. The most important rules of style are keep it simple and keep it concise.

Organization

Berardo lists poor organization as the most common mistake in writing. A reviewer may recommend rejection simply because the paper would take too much work (Berardo). Even more dangerous is that poor organization may cause the reviewer to miss the point of the paper. Our profession has accepted by convention a standard model for a paper. This model corresponds closely to the idealized set of problem solving steps. Papers that follow a similar outline are easier to read as well as easier to write. Many award winning and often-cited papers would not fit this model since they are mainly theoretical. The emphasis here is placed on applied papers since they are what most agricultural economists write and they more easily fit a model. The typical model for an applied paper is:

1. **Introduction**
2. **Theory**
3. **Procedure and Data**
4. **Results**
5. **Summary and Conclusions.**

This outline should not always be followed. Of the 53 papers published in the *NCJAE* in 1985 and 1986, about 30 followed this general outline but only five followed it exactly. Ten of the papers which did not follow this general outline relied on verbal arguments and descriptive statistics, usually from a survey. Others not following the outline were purely theoretical or were comments on alternative methods or models. For the papers which followed this general outline, the most common variant was having multiple theory, procedure, or results sections. Other variations included additional sections such as background information, review of literature, limitations, or policy implications and not having a separate theory section. Details on what information each section should contain are now discussed.

Introduction

The introduction is the most important part of the paper. The introduction must convince the reviewers that the topic is important and that the paper offers something new. A possible outline of an introduction is:

(a) State the problem. Include references if they would be helpful.

(b) State why the problem is important. If the problem is primarily of academic interest, references will be needed.

(c) State the purpose of the paper, preferably in one sentence. The purpose statement, perhaps the most important sentence in the paper, should be the result of careful thought. An example of an acceptable purpose statement is:

The objective of the research reported in this paper is to determine if increases in risk faced by marketing firms result in increased marketing margins. The purpose of a paper should be to determine, discover, find, test, develop, etc., and is not to analyze, investigate, examine, etc. The purpose state-
ment should relate to the problem, not the technique.

(d) State clearly what is new about the research. This is usually done by stating how the paper goes beyond past research. The reader needs to be told how the paper relates to past research. Never expect the reviewer to figure out what is original.

(e) The introduction must state who will benefit from the research and answer the question: Why should anybody care about the paper?

(f) State specifically how the problem is handled in the paper. This should be more than a paragraph outlining the paper.

Theory

The content of the theory section is variable. It can be a discussion or a mathematical model. A more prestigious journal usually requires a more rigorous and original theory section. Good theory is necessary to specify the empirical model. When competing theoretical approaches are available, the paper must argue for the superiority of one approach.

The model estimated should be derived either mathematically or with discussion and references. Regurgitation of textbook material should be avoided. If the theory is well known or limited, it can be incorporated into the introduction or procedure section.

Procedure

The procedure should be linked with the theory section. All variables and the model specification should be described. The model should be compared with those of similar studies. Anticipate reviewers’ comments and include some misspecification and fragility tests as part of your procedures. Ideally, readers should be able to duplicate the results from the information provided, although they may have to read the references to do so. Space limitations will prevent a full description of complicated methods. One remedy is to cite a more detailed description of techniques (the American Journal of Agricultural Economics now uses an AJAE appendix, which can be placed on AgEcon-Search).

Data

The discussion of the data can either be combined with the procedure section or placed in a separate section. The data section should give complete sources and include grades and units where appropriate. If primary data are used, information will need to be provided about data collection. Again, unless it would be too long, enough information should be provided that someone could duplicate the results.

If any of the data are proxies for the conceptual variables, explanations should be provided about how this might influence the results. If the data are several years old, explanations should be provided about why more current data have not been used.

Results

Empirical estimates and their economic and policy implications should be discussed and results contrasted with those of previous research. Procedures should not be introduced in the results section. Tables should be
used to present any large set of numbers, but only those that are necessary should be included. The text should interpret the tables and should definitely not just repeat what is in the tables.

High quality tables and figures give the impression of the work being professional. Look in a journal and see how tables and figures are done. Tables should have three (occasionally two) complete horizontal and no vertical lines. Figures should not have gridlines. A table should be sufficiently self-explanatory that it could be understood by itself. The title should describe what is in the table rather than what the table does. Be generous in using long table titles and precise table footnotes.

Conclusions

A well-written conclusions section is important for a casual reader. A reader should be able to understand the main points of the paper by reading the introduction and conclusions. Therefore, the conclusions section should not contain acronyms or mathematical symbols.

Most authors begin the conclusions by briefly summarizing the paper. Next, answer the question: What can be learned from the study? The reader should understand that the stated purpose of the paper has been accomplished. Any limitations that a reviewer is likely to notice should be pointed out. Topics for further research may be suggested, but Houck argues this adds little of value to the paper. Finally, end with a strong statement.

Not all papers will fit this outline. As a general rule, the paper should look like papers already published in the journal to which it is to be submitted. The paper should have a similar level of mathematical sophistication, number of equations, tables, references, length of introduction, etc. This is especially important when trying to publish outside of agricultural economics.

Authorship

Who to include as authors and what order to put them in is confusing. This is an important topic for career advancement, yet few general rules apply. Ideally, judgments should be made on the significance of each person’s contribution, but this is difficult to determine. One rule is that when in doubt, err on the side of including too many authors. At most universities, authorship is not a zero sum game. Including extra authors costs little while helping someone else and avoiding the risk of hurt feelings.

The second question is in what order to include the authors. One common, but not entirely satisfactory, rule is that whoever writes the first draft is the senior author. Applying this rule to a journal article developed from a thesis, the student would be senior author if the student develops the first draft from the thesis. But if the student’s advisor must develop the first draft from the thesis, the advisor would be senior author. A student should not be afraid to push for senior authorship. The order of authors does not influence acceptance or rejection and it costs the advisor little since work by a student is generally treated as the advisor’s own work. This is not true, however, when one faculty member is placed ahead of another. When two faculty members contribute
relatively equally to a paper, the authors are sometimes listed in alphabetical order (although random order might make more sense) and a statement is included that senior authorship is shared by the two authors.

Selection of Publication Outlet

In general, a journal is more prestigious if it 1) is older, 2) has a large circulation, 3) has a lower acceptance rate, 4) is less specialized, and 5) is technical or theoretical (for specific rankings of economics journals see Hawkins et al. or Liebowitz and Palmer). Rankings based solely on these criteria would be quite different than the rankings Broder and Ziemer found in a survey of agricultural economists. Their results demonstrate that there is a bonus for publishing within one’s own discipline and that people think more highly of journals that are familiar to them.

A paper should be sent to the most prestigious journal where it has a reasonable chance of acceptance and that will allow the intended audience to be reached. If the material could become dated, it should be sent to a journal that has a quick review time and is likely to accept it. But do not always choose the path of least resistance, since a paper may not be noticed by others if it is published in a minor journal. More prestigious journals are less tolerant of incomplete logic and poorly formed ideas. Therefore, a paper must be in better shape before it is submitted to a prestigious journal. Alternatives should always be kept in mind, since for most agricultural economics journals, the odds favor rejection. With all the journals available to agricultural economists, if the paper is sound and relevant, a journal willing to publish the paper should eventually be found.

The Review Process

A paper will not be published unless it is submitted. At some point before a paper is perfect it must be submitted and the long wait for a reply begun. If a reply is not received within four or five months, call, write or e-mail the editor to find out the reason for the delay. When the response from the editor finally arrives it will often contain one of the following replies:

1. Accepted
2. Accepted subject to minor revisions
3. Revise and resubmit
4. Reject, but may reconsider/ Not published
5. Rejected.

The first three replies are all favorable. “Accepted subject to minor revisions” usually means only editorial changes are needed and is rarely given on the first submission. Revise and resubmit means the editor thinks the paper can probably be revised into an acceptable form. It is not a guarantee of publication, but it is about as positive of a response as can be expected after a first review. “Rejected” which is sometimes phrased as “respectfully decline publication” means that under no circumstances should the paper be resubmitted. If a paper is rejected, use the comments to revise the paper and send it to another journal. Sometimes editors say that a resubmission will be treated as a new submission, but what is really meant is
that the paper is rejected. “Rejected, but may reconsider,” is ambiguous (Fettig) and is not used by all editors. It usually means the editor is uncertain whether the paper could be revised successfully, but the editor would be willing to consider a total revision of the paper. In most cases it is best to consider a paper that is in this category to be rejected if the problem choice or entire procedure is criticized. Sometimes editors will use the phrase “unacceptable in its present form,” which is relatively positive. Some people say that if the editor leaves any window of opportunity for a revision that you should take it, but I do not agree. The editor’s letter is the key because sometimes reviewers place their most serious criticisms in their letter to the editor rather than in their comments to the author.

Sometimes an experienced colleague can help decipher the meaning of an editor’s letter. If the editor’s letter says “encourage revision,” revise the paper and send it back without delay.

The quality and relevance of review comments are quite variable, but in most cases review comments will help improve the paper. Arguing with the reviewers or the editor unless they are clearly wrong is rarely productive. When a reviewer fails to understand something, it is often the author’s fault for failing to write clearly. Be prepared to re-estimate the empirical model since the reviewer may ask for alternative specifications to be considered (some of this can be prevented by presenting alternative specifications in the paper). If the reviewer’s comments are numbered one through 42, then the responses to the reviewer’s comments provided to the editor should be numbered one through 42. If the comments are beyond the scope of the paper or in error, then explain logically why what the reviewer asked was not done. Show appreciation to the reviewers and do not ridicule them in any way.

Summary

This paper provided a brief guide to journal publication success. Much wasted effort could be eliminated if authors would follow the rules proposed in this paper. Success in publishing comes through selecting important and original topics, using appropriate procedures, and effectively communicating the results to others. Knowing how to organize a paper, select an appropriate outlet, and deal with editors and reviewers can improve the probability of success. The review process can be frustrating, but rewards go to those who persevere.

References

Broder, Josef M. and Rod F. Ziemer. “Determinants of Agricultural Economics Faculty Salaries.” American

